(4x^2-2x+1)-(x^2-2x+7)=0

Simple and best practice solution for (4x^2-2x+1)-(x^2-2x+7)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4x^2-2x+1)-(x^2-2x+7)=0 equation:



(4x^2-2x+1)-(x^2-2x+7)=0
We get rid of parentheses
4x^2-x^2-2x+2x+1-7=0
We add all the numbers together, and all the variables
3x^2-6=0
a = 3; b = 0; c = -6;
Δ = b2-4ac
Δ = 02-4·3·(-6)
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{2}}{2*3}=\frac{0-6\sqrt{2}}{6} =-\frac{6\sqrt{2}}{6} =-\sqrt{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{2}}{2*3}=\frac{0+6\sqrt{2}}{6} =\frac{6\sqrt{2}}{6} =\sqrt{2} $

See similar equations:

| 7x=3x+12,2x+5 | | y/25=y-11 | | x2+10x+42=-3x | | x2–2x+3=2(x2–x+1) | | -19=3x+4 | | 3.2x=0.6+13 | | -2k+16=-16-4k | | 18y+5y+18=-14+15y | | x-3/3=5x+7/4 | | 9.8k-4.3-4.7k=26.3k= | | 3(x+4)=5(2x-2) | | -11+12z=-7+13z | | 8x+48x*^2-120=0 | | 36-2x=8(6+x)+2x | | -3+8p=6p+5 | | 5m+4=7m+14 | | 4^x3×2^x+2+32=0 | | (4/5)y=8 | | 3s+15=0 | | f/4+11=15 | | 6-3/4x+1/3=1)2x+5 | | 2x-8+9x=10-5x | | -9+5-11t=-9+20 | | 12x+10=8x-6 | | -13g=-14g+6 | | |x2+5|=0 | | |x^2+5|=0 | | (x^-3x)^2-16(x^2-3x)-36=0 | | -r+2=-7r+7+7r | | b/25=5 | | 3(n-5)=17 | | 5x+5+x+30=180 |

Equations solver categories